Self-Assessment Quiz

The questions in this self-assessment quiz are based on the articles in this issue of the journal. Each of the questions or statements is followed by five possible answers or completions. Select all of the correct answers to each of the questions and circle the corresponding letters. The answers appear on the inside front cover of this issue.

As an organization accredited for continuing medical education, the American Academy of Pediatrics certifies that this continuing medical education activity, when used and completed as directed, meets the criteria for two hours of credit in Category 1 of the Physician’s Recognition Award of the American Medical Association and two hours of PREP credit.

To earn two hours of Category I credit and two hours of PREP credit, you must be registered for PREP or subscribing to PEDIATRICS IN REVIEW. You have received a three-ring binder which contains a set of IBM computer cards and return envelopes. There are no monthly deadlines for the return of the computer cards, except that all cards must be returned by June 30, 1985 to ensure proper credit. Be sure that the date on the computer card corresponds with the date on each issue. Please do not write over the date or the ID number of the card.

We invite you to write specific comments about the relevance of each of the articles and any other comments you wish to make about the Journal on the back of each card.

1. Most children and adolescents with Hodgkin’s disease initially are seen with:
 A. Mediastinal mass detectable by chest roentgenograms.
 B. Anemia.
 C. Localized painless lymphadenopathy.
 D. Palpable splenomegaly.
 E. Constitutional symptoms.

2. True statements about Hodgkin’s disease in children and adolescents include:
 A. Identification of Reed-Sternberg cells is particularly helpful in making a histologic diagnosis.
 B. Malignant cells are usually demonstrated to originate from thymus-derived lymphocytes.
 C. Most common site of abdominal involvement is the spleen.
 D. Majority of cases appear to remain localized for relatively long periods of time.
 E. Greater than 80% of patients are initially seen with disease confined above the diaphragm (by clinical assessment).

3. True statements pertaining to the treatment of children with Hodgkin’s disease include:
 A. In localized disease (stage IA/IIA) the cure rate with radiation therapy is approximately 90%.
 B. More than half of patients with disseminated (stage IV) disease can be cured.
 C. Chronic immune deficiency occurs in at least 50% of patients given combined modality treatment.
 D. A common complication of combined modality treatment is the development of a second neoplasm.
 E. Growth retardation is a common complication of radiation treatment in children.

4. Wilms’ tumor, when contrasted with neuroblastoma, is more likely to be associated with:
 A. Maternal intake of phenytoin (Dilantin) during pregnancy.
 B. Nonfamilial anemia.
 C. Congenital anomalies of the genitourinary tract.
 D. Origin outside the kidney.
 E. Hemihypertrophy.

5. A 4-year-old asymptomatic boy is found to have a mass in his left flank. Ultrasonography demonstrates a thrombosis extending into the renal vein. The single most likely diagnosis is:
 A. Neuroblastoma.
 B. Wilms’ tumor.
 C. Multicystic kidney.
 D. Hydronephrotic kidney.
 E. Renal carbuncle.

6. In children with neuroblastoma, which of the following suggest a better prognosis?
 A. Stage IV-S, as contrasted with stage IV disease.
 B. High ratios of urine vanilmandelic acid/homovanillic acid.
 C. High serum ferritin levels.
 D. Older age group.
 E. Ability of tumor to grow indefinitely in tissue culture.

7. A 5-year-old girl is seen with an asymptomatic right flank mass. An intravenous pyelogram shows an intrarenal mass highly suggestive of a Wilms’ tumor. Additional preoperative studies should include:
 A. Computed tomography.
 B. Chest roentgenograms.
 C. Ultrasonography.
 D. Transcutaneous needle biopsy of tumor.
 E. Urine collection for catecholamine analysis.

8. Erythema chronicum migrans:
 A. Is the key clinical feature in the diagnosis of Lyme disease.
 B. Clears before other symptoms appear.
 C. Most commonly occurs during the summer.
 D. Is caused by a spirochete.
 E. Typically is an annular lesion.

9. The arthritis associated with Lyme disease typically:
 A. Occurs about 1 month after the onset of erythema chronicum migrans.
 B. Is pauciarticular.
 C. Affects the small joints.
 D. Lasts <1 week.
 E. In children recurs with complete remissions between attacks.

10. Lyme disease chiefly occurs in which areas of the United States?
 A. North-central.
 B. Northeastern coast.
 C. California-Oregon.
 D. Louisiana-Florida.
 E. Wisconsin.

11. Laboratory test results that are often abnormal (elevated) in those patients who are likely to develop arthritic and/or neurologic complications following erythema chronicum migrans include:
 A. Leukocyte count.
 B. Serum IgM.
 C. Cryoglobulin IgM.
 D. Serum IgA.
 E. Serum immune complexes.

12. Antibiotics that are useful in the treatment of Lyme disease include:
 A. Penicillin.
 B. Cefaclor.
 C. Trimethoprim-sulfisoxazole.
 D. Tetracycline.
 E. Erythromycin.

13. Which of the following presenting clinical findings are suggestive of the adult (rather than the juvenile) form of chronic myelogenous leukemia?
 A. Eczematoid skin rash.
 B. Marked lymphadenopathy.
 C. Survival >1 year.
 D. Wheezing.
 E. Bruising easily.

14. Typical laboratory results in the juvenile form of chronic myelogenous leukemia include:
 A. WBC count >100,000/μL.
 B. Philadelphia chromosome (Ph+) present.
 C. Normal fetal hemoglobin level.
 D. Increased immunoglobulin levels.
 E. Reduced leukocyte alkaline phosphatase level.

15. Which one of the following treatment modalities has apparently cured some patients with the adult form of chronic myelogenous leukemia?
 A. Busulfan.
 B. Bone marrow transplantation.
 C. Hydroxyurea.
 D. Splenic irradiation.
 E. None of the above.