Discharge of Medically Complex Infants and Developmental Follow-Up

Jillian Connors, MD, Tomas Havranek, MD, Deborah Campbell, MD
Learning Objectives

Upon completion of this article, readers should be able to:

• Identify commonly encountered morbidities in preterm and term infants discharged from the neonatal intensive care unit

• Recognize that the discharge planning process begins early during the NICU hospitalization

• Describe the need for coordinated and comprehensive post-discharge care of infants with multiple medical problems.

• Develop discharge plans that are individually tailored to each infant based on his or her comorbidities, need for technology support outside the NICU and risk of future illness or impairment

• Identify infants who may be at risk for neurodevelopmental delays and impairment and who may benefit from neurodevelopmental follow-up and early intervention services
Scope of the Issue

• Survival of preterm and critically ill infants has increased over time
 • Improvements in maternal and neonatal care
 • Increased availability of advanced technologies in the NICU

• More infants are being discharged from the NICU with unresolved and active medical issues that require ongoing multidisciplinary care

• Some infants with medical complexity are dependent on technology at NICU discharge

• Primary care physician plays critical role in coordinating care across multiple subspecialties, creating family-centered medical home for the infant with medical complexity
Infants with Medical Complexity

<table>
<thead>
<tr>
<th>General</th>
<th>Prematurity</th>
<th>Endocrine</th>
<th>Metabolic Bone Disease of Prematurity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Genetic Syndromes</td>
<td></td>
<td>Hyperinsulinism</td>
</tr>
<tr>
<td></td>
<td>Neonatal Abstinence Syndrome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary</td>
<td>Bronchopulmonary Dysplasia</td>
<td>Neurologic</td>
<td>Intraocular Hemorrhage</td>
</tr>
<tr>
<td></td>
<td>Congenital Lung Anomalies (Congenital Pulmonary Diaphragmatic Hernia, Congenital Pulmonary Airway Malformation, Meconium Aspiration Syndrome)</td>
<td></td>
<td>Hydrocephalus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seizures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hypoxic Ischemic Encephalopathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Therapeutic Hypothermia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Congenital Neuromuscular Disorders</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Congenital CNS Malformations</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Congenital Heart Disease</td>
<td>Infectious Disease</td>
<td>Recurrent Infections</td>
</tr>
<tr>
<td></td>
<td>Patent Ductus Arteriosus</td>
<td></td>
<td>Perinatal HIV Exposure</td>
</tr>
<tr>
<td></td>
<td>Transcatheter PDA Closure</td>
<td></td>
<td>Perinatal Hepatitis B/C Exposure</td>
</tr>
<tr>
<td></td>
<td>Pulmonary Hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECMO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Congenital Anomalies (Gastrochisis, Atresias, Duplications, Short Gut Syndrome)</td>
<td>Ophthalmologic</td>
<td>Retinopathy of Prematurity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Congenital Eye Anomalies</td>
</tr>
<tr>
<td>Renal</td>
<td>Congenital Renal Anomalies (Multicystic Dysplastic Kidney, Acute Kidney Injury)</td>
<td>Hematologic</td>
<td>Anemia of Prematurity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Immune Deficiency</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>Congenital GU Anomalies (Posterior Urethral Valves, Hypospadias, Vesicoureteral Reflux)</td>
<td>ENT</td>
<td>Hearing Loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Airway Anomalies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tracheostomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Metabolic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inborn Errors of Metabolism</td>
</tr>
</tbody>
</table>

- Any congenital or acquired condition or complication that may impact long-term health, function and/or neurodevelopment.
Discharge Planning and Care Transition

• Begins early during NICU hospitalization
 • Assess family’s goals for their infant
• Requires participation from all care team members
• Tailor discharge criteria to each infant
• Contingency planning if/when criteria are not met
Special Circumstances

• Infants discharged from the NICU dependent on technology
 • Pulse oximetry monitoring
 • Oxygen
 • Chronic invasive ventilation via tracheostomy
 • Nasogastric or gastrostomy tube feeding
 • Parenteral nutrition

• Home palliative care
 • Life-limiting disorders: chromosomal abnormalities and genetic syndromes, severe inborn errors of metabolism, CNS malformations, severe HIR
 • Advanced directives, bereavement support
Pulmonary

• Bronchopulmonary Dysplasia
 • One of the most common morbidities in preterm infants
 • Infants with moderate to severe BPD may require prolonged respiratory support
 • Oxygen via nasal cannula, continuous positive airway pressure, chronic invasive ventilation via tracheostomy
 • Treated with diuretics, inhaled steroids and bronchodilators
 • Complications: Pulmonary hypertension, pulmonary vein stenosis, growth failure from increased metabolic demand, developmental delay and neurodevelopmental impairment
 • Coordinated care in BPD clinic, if available (Neonatology, Pulmonology, Cardiology, ORL)
Pulmonary

• Other pulmonary disorders requiring coordinated care after NICU discharge
 • Meconium Aspiration Syndrome with Persistent Pulmonary Hypertension of the Newborn
 • Congenital lung anomalies (i.e. Congenital Diaphragmatic Hernia)
 • Infants who required extracorporeal membrane oxygenation (ECMO)
 • Higher risk of poor oral feeding, neurologic complications, developmental delay and long-term neurodevelopmental impairment
Cardiovascular

• Congenital Heart Disease
 • ASD, VSD, PDA: close follow-up based on defect size, location and direction of shunt; monitor for heart failure symptoms and determine need/timing of surgical closure
 • Close follow-up after transcatheter PDA closure, endocarditis prophylaxis 6mo post-procedure
 • May require supplemental oxygen, pulse oximetry monitoring, tube feeding after discharge
 • Complex Critical CHD: coordinated follow up with Cardiology, Cardiothoracic Surgery and neurodevelopmental specialists
 • Infants who require early surgical repair or palliation with cardiopulmonary bypass are at even higher risk for developmental delay and neurodevelopmental impairment

• Hypertension: Multifactorial etiology
 • BP monitoring at all well-child visits, need infant-sized cuffs
Feeding and Nutrition

• Mother’s own breast milk is optimal nutrition for most infants
 • Exceptions include some inborn errors of metabolism (i.e. galactosemia)

• Preterm infants with appropriate growth who feed >180 ml/kg/d may not require fortification of breast milk with transitional formula
 • Infants with growth restriction, metabolic bone disease or intake < 170ml/kg/d should receive fortification or supplementation (22 to 26 kcal/oz) for 12 weeks past term age
 • On-demand breastfeeding with one to two formula feeds per day
 • Transitional formula powder added directly to expressed breast milk

• Preterm infants with decreased feeding efficiency/endurance may not be able to feed to empty breast until 4-6 weeks after discharge
 • Mother should continue to pump after breastfeeding to maintain adequate supply
Metabolic Bone Disease

• Osteopenia due to prematurity
 • Decreased calcium and phosphorus accrual in utero (majority occurs during 3rd trimester)

• Reduced incidence and severity with fortification of breast milk

• Serial monitoring of serum calcium, phosphorus and alkaline phosphatase
 • 2 weeks after discharge if infant feeding unfortified breast milk or standard infant formula
 • Alkaline Phosphatase > 800 IU/L: begin transitional formula supplementation, > 1000 IU/L: begin calcium and phosphorus supplements

• Minimum Vitamin D supplementation for VLBW infants: 400 IU per day
Tube Feeding and Parenteral Nutrition

• Post-discharge Tube Feeding
 • Infants with poor feeding efficiency/endurance, increased metabolic demand, neurologic impairment or congenital anomalies
 • 2-3mo trial of supplemental nasogastric feeds if full oral feeds anticipated
 • Gastrostomy tube placement prior to NICU discharge or if trial of nasogastric feeds fail

• Intestinal Failure: Short Gut Syndrome due to necrotizing enterocolitis or congenital GI anomalies; malabsorptive syndromes
 • Inpatient intestinal rehabilitation vs home parenteral nutrition
 • Extensive parental teaching/training, central line care, home nursing
 • Coordinated follow-up with gastroenterologist, nutritionist, PN pharmacist
Renal

• Acute Kidney Injury (AKI)
 • Increasingly recognized as common in preterm and critically ill infants in NICU
 • Associated with poor long-term health outcomes
 • Chronic kidney disease in childhood/adolescence
 • Hypertension
 • BP monitoring at all well-child visits, need infant-sized cuffs

• Congenital renal and urologic anomalies require coordinated follow-up after NICU discharge with pediatric nephrology and urology
Hematologic

• Anemia of Prematurity
 • Due to shortened red blood cell lifespan, blunted erythropoietin response, decreased iron stores, iatrogenic blood loss from phlebotomy
 • Physiologic nadir occurs earlier and is more severe in preterm infants
 • Preterm infants should receive at least 2mg/kg of ferrous sulfate until 12mo
 • Breastfed infants may require more
 • Serial hematocrit monitoring for infants with low pre-discharge hematocrit, history of multiple packed red blood cell transfusions or slow weight gain
Infectious Disease

• Timely vaccination critical for infants with medical complexity to prevent vaccine-preventable illnesses
 • Follow CDC guidelines schedule based on chronologic age (regardless of gestational age at birth)

• Respiratory Syncytial Virus prophylaxis for high-risk infants
 • Prematurity, chronic lung disease, congenital heart disease, neuromuscular disorders, immunodeficiency
 • Must be cognizant that infants discharged during late spring and summer will be candidates for prophylaxis during up-coming RSV season

• Infants with history of recurrent infections, immunodeficiency, perinatal HIV, Hepatitis B or C exposure may require close follow-up after NICU discharge
Ophthalmologic

• Retinopathy of Prematurity: Abnormal growth of retinal vasculature, may lead to retinal detachment and blindness
 • High-risk infants born < 31 weeks or < 1500g are screened by pediatric retina specialists until retina is fully vascularized (often occurs after NICU discharge)

• Preterm infants at higher risk for myopia, amblyopia and strabismus later in infancy/childhood, require close ophthalmologic follow-up

• Other eye issues requiring close follow-up: congenital eye disorders (glaucoma, cataracts), systemic illness with eye involvement (TORCH infection)
Neurologic - Intracranial Hemorrhage

• Intraventricular Hemorrhage: More common in preterm infants
 • Serial cranial ultrasounds from first days of life through term-equivalent
 • Associated with developmental delay, neurodevelopmental impairment (cerebral palsy)
 • Highest risk with Grade IV (intraparenchymal) hemorrhage and periventricular leukomalacia

• Subdural and subarachnoid hemorrhages: Often asymptomatic or incidental finding
 • Severe catastrophic hemorrhages associated with poor long-term outcomes

• Neonatal Stroke: Cerebral arterial infarction or sinovenous thrombosis
 • Increased risk for developmental delay, neurodevelopmental impairment (cerebral palsy, focal neurologic deficits)
Neurologic - Hydrocephalus

• Congenital (aqueductal stenosis) vs Acquired (post-hemorrhagic, post-infectious)

• Severe or rapidly progressive hydrocephalus requires CSF diversion to mitigate permanent parenchymal injury
 • Ventriculo-peritoneal, ventriculo-atrial, ventriculo-pleural, ventriculo-subgaleal shunts
 • Temporary vascular access device or reservoir in infants too small for definitive shunting

• Risk of shunt complications (infection, malfunction, need for revision) and poor neurodevelopmental outcomes
Neurologic - Immaturity

- Apnea of Prematurity: CNS respiratory immaturity leading to pauses in spontaneous respiration
 - May also have component of airway obstruction
 - Associated with oxygen desaturation and/or bradycardia
- Typically resolves by 37 weeks’ PMA but persists longer in extremely preterm infants and those with BPD
- Often used as discharge criteria (no apneic, bradycardic or desaturation events for 5-7 days), frequently delays discharge
 - Some infants discharge with home pulse oximetry monitoring or caffeine treatment but no evidence-based guidelines for duration or weaning criteria
 - No evidence for improved outcomes with home monitoring
Neurologic

• Infants with neurologic conditions or complications require close coordinated follow up with pediatric neurology and neurodevelopmental specialists
 • Seizures are common presenting sign of underlying CNS or systemic disorders, often treated with antiepileptic medication beyond NICU discharge
 • Require close monitoring of drug levels and adverse drug effects
 • Specialized clinics for infants with myelomeningocele, neuromuscular disorders provide coordinated, comprehensive care from multiple pediatric subspecialties in one location
Neurodevelopmental Assessment

• Infants with medical complexity at higher risk for developmental delay and neurodevelopmental impairment
 • Require close coordinated follow-up, serial assessments, physical, occupational, speech and feeding therapy, if indicated, to optimize outcomes and function

• Assessment prior to NICU discharge to identify infants at highest risk for impairment, assist in discussing long-term prognosis
 • Brain Magnetic Resonance Imaging: detection of more subtle findings not visible on cranial ultrasound
 • Diffuse PVL, ischemic injury, cerebellar hemorrhage, brain atrophy
 • General Movements Assessment: clinical assessment performed serially, highly sensitive and specific for predicting spastic cerebral palsy
Neurodevelopmental Follow-Up

• Routine surveillance at well child visits, formal assessment at 9, 18 and 30mo with PCP
 • High-risk infants should be referred for Early Intervention services at discharge, followed by a neurodevelopmental specialist within 3-4mo of NICU discharge and have more frequent serial assessments

• Monitor for developmental delay in all domains; motor, coordination or tone abnormalities; cerebral palsy; vision and hearing deficits, cognitive impairment; problems with sensory processing, communication and behavior

• Infants with medical complexity have higher risk for autism and ADHD
 • Autism screening at 18 and 24mo
 • ADHD screening at 4y
References

References

References

